

AIM OF RESEARCH

Our work aims to detect unusual hidden data (outliers) in complex data, which are decision rules. Intelligent expert applications will soon be able to diagnose disturbing symptoms of the disease quickly. These types of applications operate based on decision rules. Applications:

- 1. network traffic,
- 2. potential intrusion detection,
- 3. fraud detection,
- 4. in medical applications: patient monitoring to detect critical, possibly life-threatening situations.

SUMMARY

Figure 3, confirms that in each case, with 1%, 5%, and 10% of the outliers detected, **the cluster** quality assessment indicators improved, after removing them from the dataset. We applied the LOF algorithm to complex data, such as rules in knowledge bases.

	Phase I – before removing outliers						Phase II – after removing ouliers			
	Silhouette	Dunn	Davies-Bouldin	CPCC		k	Silhouette	Dunn	Davies-Bouldin	CPCC
1%	<u>0.312414</u>	<u>0.4</u>	<u>0.483487</u>	<u>0.604610</u>] [7	0.316253	0.4	0.470753	0.607284
5%	<u>0.312414</u>	<u>0.4</u>	<u>0.483487</u>	<u>0.604610</u>] [300	0.320450	0.4	0.475842	0.635482
10%	<u>0.312414</u>	<u>0.4</u>	<u>0.483487</u>	<u>0.604610</u>		3	0.325561	0.47	0.479455	0.611951

Figure 3: Compare the quality of cluster with oulier and after their removal

In the description of the rules to a large extent, apart from quantitative features, there qualitative features. When using this are algorithm for real data, we have to execute it many times, changing the algorithm's parameter (degree of the neighbourhood). Consultation with a domain expert confirms, that all the rules indicated as deviations are in some sense atypical.

REFERENCES

Nowak-Brzezińska A., Horyń C. "Exploration of Outliers in If-Then Rule-Based Knowledge Bases" Entropy, 22 (10) (2020) https://doi.org/10.3390/e22101096

OUTLIERS IN COVID 19 DATA BASED ON RULE REPRESENTATION - THE ANALYSIS OF LOF ALGORITHM AGNIESZKA NOWAK-BRZEZIŃSKA, CZESŁAW HORYŃ J UNIVERSITY OF SILESIAN IN KATOWICE

0

OUTLIERS IN RULES

According to the definition given by Grubbs in **1969:** "An outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs". Today outliers are known to have two important characteristics: outliers are different from the norm concerning their features, and they are rare in a dataset compared to normal instances. Unusual rules are not errors but have got unusual features and differs from other rules. They need to be discovered by knowledge engineers and discussed with knowledge experts, who may extend the domain to which an unusual rule belongs.

EXPERIMENTS PHASE I

We can see that the optimal index values, were obtained for **2** clusters, and the centroid method.

id	Silhouette	Dunn	Davies-Bouldin	CPCC	Clusters	Clustering method
1	0.256469	0.1	1.255498	0.627978	2	Ward.D
2	0.133531	0.1	1.817726	0.627978	3	Ward.D
48	0.123899	0.111111	2.029511	0.627978	49	Ward.D
49	0.124642	0.111111	2.017838	0.627978	50	Ward.D
1	0.149606	0.1	1.875984	0.518124	2	Ward.D2
2	0.189705	0.1	1.540459	0.518124	3	Ward.D2
48	0.151667	0.125	2.104539	0.518124	49	Ward.D2
49	0.147501	0.125	2.099490	0.518124	50	Ward.D2
1	0.255129	0.4	0.577142	0.431075	2	single
2	0.224813	0.4	0.541113	0.431075	3	single
48	-0.230618	0.2	0.788247	0.431075	49	single
49	-0.230997	0.2	0.794906	0.431075	50	single
1	0.194951	0.1	1.376539	0.534238	2	complete
2	0.079259	0.1	2.262753	0.534238	3	complete
48	0.039924	0.166667	2.030654	0.534238	49	complete
49	0.047490	0.166667	2.040525	0.534238	50	complete
1	0.283532	0.2	1.018698	0.747380	2	mcquitty
2	0.226740	0.2	1.488808	0.747380	3	mcquitty
	0.056885	0.125	1.774643	0.747380	49	mcquitty
	0.058056	0.125	1.833024	0.747380	50	mcquitty
1	0.251177	0.2	0.518758	0.518853	2	median
2	0.158096	0.2	0.530860	0.518853	3	median
	-0.288508	0.1	1.209505	0.518853	49	median
	-0.295951	0.1	1.198937	0.518853	50	median
1	0.312414	0.4	0.483487	0.604610	2	centroid
2	0.208589	0.2	0.512787	0.604610	3	centroid
	-0.273642	0.2	0.895063	0.604610	49	centroid
	-0.275366	0.2	0.891933	0.604610	50	centroid

Table 1: Phase I - looking for the optimal values of clustering quality

Table 1 shows a repetition for 49 different values

 of the number of groups, and 8 different methods of combining the values of 4 selected measures of cluster quality assessment: Dunn, Davies-Bouldin, silhouette and CPCC measures.

FUTURE RESEARCH

Future research will focus on two issues: research on improving the effectiveness of the inference process in rule-based knowledge bases, after the

RESEARCH METHODOLOGY

Figure 1: Research methodology. Dataset: Covid 19 Case Surveillance Public Use Data have qualitative characteristics provided by CDC (data.cdc.gov)

Figure 2: Phase II - lists of detected ouliers for 1 %, 5 % and 10 % case

elimination of outlier rules, and further **search for** algorithms, that will detect unusual rules even more effectively.

	PHASEI	Phase I - 1
	Load the source data set into RSES	1 T
a	Generate Rules with RSES	1. Load Stuc
3	Clustering AHC Rules	2. Load
	Repeat your calculation	3. Gen
	Designate seven metrics (silhouette index, Dunn index, Davies-Bouldin index and CPCC,)	algo 4. Rule
	Find the best distance method between clusters and the optimal number of clusters	met
1	Detect outliers rules (1%, 5%, 10%) using LOF, COF, K-MEANS, SMALL CLUSTERS algorithms	Phase II - which cor
2	Remove outliers and rerun the grouping process	knowledg
-3	Recalculate all seven grouping quality indicators (cluster validity)	1. Rem
	Verification of the hypothesis	base
	Formulation of conclusions	2. Reca
-		indi

EXPERIMENTS PHASE II

	LOF outliers id
1%	(359) 519, 190, 322, 2394, 177, 231, 2356, 276, 218, 196, 948, 2302, 176, 261, 337, 1866, 1015, 2440, 766
	353, 1833, 1902, 362, 2279
5%	2489, 485, 165, 242, 504, 105, 479, 471, 483, 2419, 102, 103, 243, 79, 475, 377, 128, 52, 129, 2173, 2364
	164, 537, 80, 2135, 2358, 51, 172, 24, 100, 63, 244, 2347 (359) 2377, 252, 40, 2176, 2367, 499, 2155, 2156
	2154, 1330, 1251, 2487, 1354, 1329, 2344, 512, 484, 2411, 202, 2465, 2475, 1208, 526, 251, 246, 358
	2325, 2368, 2164, 2157, 2159, 2175, 468, 1209, 2212, 362, 2393, 2151, 2491, 352, 152, 2482, 173, 2404
	1116, 1152, 71, 1346, 490, 203, 521, 2392, 2455, 1244, 167, 2275, 1299, 346, 1118, 2328, 1312, 1131
	1227, 1194, 1141, 525, 2149, 2169, 1243, 133, 498, 2178, 488, 2397, 1185, 727, 1305, 1262, 126, 354
	1275, 85, 1231, 1229, 1335, 1268, 1255, 1267, 106, 469, 1170
10%	2231 359 82, 2167, 1017, 1358, 519, 2160, 231, 2105, 212, 1270, 2188, 1144, 461, 2394, 85, 70, 1206
	136, 2134, 190, 189, 332, 1337, 350, 218, 33, 346, 2425, 171, 25, 340, 2177, 134, 2033, 40, 322, 2224
	480, 192, 337, 1013, 2120, 221, 1369, 108, 250, 42, 8, 2393, 1946, 1914, 1204, 1322, 196, 948, 5, 2228
	1071, 2423, 2021, 6, 2166, 1290, 1242, 90, 1366, 525, 86, 2029, 456, 1010, 1166, 425, 18, 1356, 304, 524
	138, 2101, 1115, 1288, 109, 2041, 1849, 591, 1314, 2119, 2366, 78, 1162, 179, 1263, 32, 254, 1937, 536
	2410, 21, 642, 2110, 1866, 826, 1153, 1364, 2418, 295, 2093, 881, 919, 903, 819, 529, 947, 936, 284, 143
	713, 1150, 1015, 1075, 1916, 1961, 2133, 2323, 1833, 1902, 1847, 2190, 1229, 1268, 2072, 2014, 1345
	2331, 1734, 1671, 1516, 2100, 916, 1977, 2010, 2053, 407, 2126, 1714, 1703, 463, 841, 865, 2036, 2031
	1921, 549, 1825, 1851, 1874, 1048, 481, 1363, 1987, 1378, 2027, 806, 1442, 1417, 2091, 1568, 370, 1462
	2248, 2270, 2303, 1544, 450, 438, 1821, 1892, 663, 733, 1470, 620, 652, 1505, 2244, 1643, 651, 1373, 394
	1912, 398, 490, 1396, 554, 1498, 1635, 215, 558, 1447, 1283, 1333, 1618, 1404, 1596, 1398, 382, 2311
	77, 1604, 771, 548, 556, 801, 1523, 1482, 2443, 57, 477, 1611, 1627, 1674, 1606, 1381, 2173, 419, 1009
	1471, 584, 623, 632, 1426, 1571, 193, 300, 2489, 121, 547, 567, 587, 624, 846, 1474, 837, 1901, 391, 2312
	1936, 1481, 1070

The second phase results, in which we are looking for outliers in the data in the optimal structure of rule groups established in the first phase. For this purpose, we choose 1%, 5%, and 10% of the most unusual rules using the LOF method. We are looking for cases that, after eliminating unusual rules, will improve the evaluation of the cluster quality. The most unusual rule, indicated by all trials, is Rule No. 359 When we look at it closely, it becomes clear, why it is unusual. Besides indicating the age group and gender, all other features (attributes) are undefined (value unknown). The rule is shown to the field expert for evaluation.

CONTACT INFORMATION

Web https://us.edu.pl/instytut/ii/ Email czeslaw.horyn@us.edu.pl **Phone** +48-32-3689757

· rules induction and clustering:

ading source dataset into RapidMiner Idio and sampling using RapidMiner, ading the source dataset into RSES,

nerating rules with RSES using LEM2 orithm,

le clustering. Find the value of as many trics and indicate the optimal result.

- we want to learn about unusual rules, Institute 1 %, 5 %, 10 % of all rules in the ge base:

moving outlier rules from the knowledge se and returning the clustering,

calculating all four grouping quality licators,

3. Verifying how many cases the quality of the cluster improved. Analysing the results of the studies.